Solvent Effects on Charge Transfer Bands of Nitrogen-Centered Intervalence Compounds

Stephen F. Nelsen, ${ }^{*, \dagger}$ Dwight A. Trieber II, ${ }^{\dagger}$ Rustem F. Ismagilov, ${ }^{\dagger}$ and Yoshio Teki ${ }^{*}$
Contribution from the Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1396, and Department of Material Science, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 Japan

Received September 19, 2000. Revised Manuscript Received February 6, 2001

Abstract

Electron transfer parameters are extracted from the optical spectra of intervalence bis(hydrazine) radical cations. Compounds with 2-tert-butyl-3-phenyl-2,3-diazabicyclo[2.2.2]octyl-containing charge-bearing units that are doubly linked by $4-\sigma$-bond and by $6-\sigma$-bond saturated bridges are compared with ones having tert-butylisopropyl- and diphenyl-substituted charge bearing units and others having the aromatic units functioning as the bridge. Solvent effect studies show that the optical transition energy (E_{op}) does not behave as dielectric continuum theory predicts but that solvent reorganization energy may be usefully separated from the vibrational reorganization energy by including linear terms in both the Pekar factor (γ) and the Gutmann donor number (DN) in correlating the solvent effect. Solvation of the bridge for these compounds is too large to ignore, which makes dielectric continuum theory fail to properly predict solvent effects on either $E_{\text {op }}$ or the free energy for comproportionation.

Introduction

Symmetrical, localized intervalence (IV) compounds have the same two charge-bearing units (M) attached symmetrically to a bridge (\mathbf{B}) and are at an oxidation level that places different charges on the \mathbf{M} units, so they may be symbolized as ${ }^{n} \mathbf{M B M}^{n+1}$. They are the simplest electron transfer (ET) systems ever devised and have played a major role in the development of ET theory. ${ }^{1}$ Hush developed a remarkably simple theory for extracting the two most important ET parameters, the vertical reorganization energy (λ) and the electronic matrix coupling element $\left(H_{a b}\right)$, by analysis of the lowest energy \mathbf{M}-to-M intramolecular charge transfer (CT) band. ${ }^{2}$ Briefly, the adiabatic ground- and excited-state energy surfaces are obtained from a simple two-state model. Parabolic diabatic ground-state initial ($E_{\mathrm{in}}=\lambda X^{2}$) and final ($E_{\mathrm{fi}}=\lambda(1-X)^{2}$) energy surfaces on the ET coordinate X are allowed to interact with energy $H_{a b}$, which represents electronic coupling between the \mathbf{M} units through the bridge. Using this Marcus-Hush two-state model, the energy minima on the resulting adiabatic ground-state surface are stabilized by $H_{a b}^{2} / \lambda$ from the diabatic minima and are slightly closer to the $X=0.5$ position of the transition state than the diabatic minima, which occur at $X=0$ and 1, respectively. The transition state energy is $E^{\ddagger}=\lambda / 4-H_{a b} .{ }^{1}$ The IV-CT band transition energy at the absorption maximum, $E_{\text {op }}=\tilde{\nu}_{\text {max }}$, is the energy separation between the ground- and excited-state adiabatic surfaces at the adiabatic minima, and equal to λ. Hush evaluated $H_{a b}$ using the ratio of the transition dipole moment in the ET direction for the IV-CT band $\left(\left|\mu_{12}\right|\right)$ to the change in dipole moment upon ET in the ET direction on the diabatic

[^0]surfaces $\left(\left|\Delta \mu_{a b}\right|\right)$ multiplied by $E_{\text {op }}$, eq 1, and pointed out that for a Gaussian-shaped band $\left|\mu_{12}\right|$ (Debye) can be evaluated from eq 2 ,
\[

$$
\begin{gather*}
H_{a b}=\left(\left|\mu_{12}\right| /\left|\Delta \mu_{a b}\right|\right) E_{\mathrm{op}} \tag{1}\\
\mu_{12}=(0.0206) \mathrm{e}\left(\epsilon_{\max } \Delta \tilde{v}_{1 / 2} / E_{\mathrm{op}}\right)^{1 / 2} \tag{2}
\end{gather*}
$$
\]

where $\epsilon_{\max }$ is the extinction coefficient at the band maximum $\left(\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ and $\Delta \tilde{\nu}_{1 / 2}$ is the bandwidth at half-height $\left(\mathrm{cm}^{-1}\right)$, when $H_{a b}$ and $E_{\text {op }}$ are in cm^{-1}. Using $\left|\Delta \mu_{a b}\right|($ Debye $)=e d_{a b}$ (where $e=4.8032$ and the electron-transfer distance on the diabatic surfaces, $d_{a b}$, is in \AA) produces the familiar Hush eq 3, where the (Hush) is included to distinguish $H_{a b}$ values obtained using eq 3 from those estimated by other means.

$$
\begin{equation*}
H_{a b}(\text { Hush })=\left(0.0206 / d_{a b}\right)\left(E_{\mathrm{op}} \epsilon_{\max } \Delta \tilde{\nu}_{1 / 2}\right)^{1 / 2} \tag{3}
\end{equation*}
$$

The \mathbf{M} groups of the great majority of IV compounds studied have been transition metal coordination complexes, especially of ruthenium, ${ }^{3}$ but the \mathbf{M} groups may also be organic. We have used the much larger internal reorganization energies of dinitrogen compounds than of ruthenium coordination complexes to construct IV compounds that have the rate constant for intramolecular ET (k_{ET}) near $10^{8} \mathrm{~s}^{-1}$, which allows measurement of k_{ET} by ESR. ${ }^{4-7}$ These compounds have rather large

[^1]$H_{a b}($ Hush $)$, ca. $400-1400 \mathrm{~cm}^{-1}$, so the CT band has a large enough $\epsilon_{\text {max }}$ to measure accurately. They provide the most straightforward test of the utility of Hush theory, comparing rate constants calculated from the optical parameters (k_{opt}) with independently measured k_{ET}. We found excellent agreement between k_{ET} and $k_{\text {opt }}$ calculated using adiabatic theory, when the diabatic surfaces used fit the observed CT band shape., 4,6,7

In this work we consider solvent effects on the optical spectra and electron-transfer equilibria of nitrogen-centered IV compounds having both saturated and aromatic bridges. The principal goals of this work have been to find out how to separate the solvent $\left(\lambda_{\mathrm{s}}\right)$ and internal vibrational $\left(\lambda_{\mathrm{v}}\right)$ components of λ by examining how λ is affected by solvent and to address the question of whether $H_{a b}$ for nitrogen-centered IV compounds is sensitive to solvent, as has been found for the extensive series of ruthenium-centered IV compounds having dicyd (1,4dicyanoamidobenzene derivative) bridges by Crutchley and coworkers. ${ }^{8}$ They argue for far more accurate evaluation of $H_{a b}$ using the thermodynamic method introduced by Taube and coworkers ${ }^{9}$ than by using eq $3 .{ }^{10}$ This method analyzes the free energy for comproportionation $\left(\Delta G_{\mathrm{c}}\right)$ of the higher and lower oxidation states to two molecules of the IV oxidation state: ${ }^{n} \mathbf{M B M}^{n}+{ }^{n+1} \mathbf{M B M}^{n+1} \rightarrow 2^{n} \mathbf{M B M}^{n+1}$. Experimentally, ΔG_{c} is the difference in E° values for the ${ }^{n} \mathbf{M B M}{ }^{n+1} \rightleftharpoons{ }^{\boldsymbol{n}+1} \mathbf{M B} \mathbf{M}^{n+1}$ and the ${ }^{n} \mathbf{M B M}{ }^{n} \rightleftharpoons{ }^{n} \mathbf{M B M}^{n+1}$ electron transfers, available from cyclic voltammetry (CV) studies. It has traditionally been assumed that the dielectric continuum theory (DCT) equation (4) introduced by Marcus is at least semiquantitatively correct

$$
\begin{equation*}
\lambda_{\mathrm{s}}=e^{2} g(r, d) \gamma \tag{4}
\end{equation*}
$$

for IV complexes. ${ }^{1-3}$ Equation 4 makes λ_{s} directly proportional to the Pekar factor, $\gamma=1 / n^{2}-1 / \epsilon_{\mathrm{S}}$, where n is the refractive index at the sodium D line, ϵ_{s} is the static dielectric constant, and $(g(r, d))$ is a distance factor that depends on the radius (r) of the charge-bearing units and the distance apart that the bridge holds their charge centers (d). The simplest form, $g(r, d)=1 / r$ $-1 / d$, requires that $d>2 r$, which is often not the case, and an ellipsoidal correction to account for the nonspherical shape of real molecules has been employed. ${ }^{11}$ It is known that specific solvent effects (taken here to mean deviations from DCT predictions) are not always negligible for ET reactions. Specific solvent effects have been observed on various types of ET reactions, especially for ruthenium-centered systems with NH_{3} ligands, including metal-to-ligand and metal-to-metal optical charge transfer, ${ }^{12,13}$ heterogeneous ET to an electrode, ${ }^{14}$ and intermolecular self-ET. ${ }^{15}$ The effects seen have been an increase in $E_{\text {op }}{ }^{12,13}$ and decrease in rate constant ${ }^{14,15}$ in more donating

[^2]
Scheme 1

bis(hydrazines) with saturated bridges

bis(hydrazines) with aromatic bridges

bis(diazeniums) with saturated bridges

solvents. The Gutmann donicity number (DN) ${ }^{16}$ has been used as the criterion for solvent donicity, and we also use it in this work.

Results

The structures of the diamagnetic oxidation states of the IV compounds discussed here appear in Scheme 1, although only one diastereomer is illustrated for each saturated-bridged compound, but for the $\mathbf{6} \sigma$-bridged compounds both syn and antisubstituted compounds were studied. The syntheses are parallel to previous work and will not be discussed. sBP4T shows 11 of the 12 carbon signals expected for one phenyl being "out" and the other "in" with slow rotation about the N -aryl CN bond; the unpaired aromatic carbon signal is approximately double intensity, representing an overlapping pair. This indicates that as for previously studied 4T derivatives this compound exists mostly in the "opposite corners syn" conformations that are made more stable than others by torsion in the tetracyclic core. ${ }^{7}$ The conformational mixtures for the BP6 σ and BI6 σ isomers are complex and both "opposite corners syn" and -anti conformations are occupied; the limited amount known is discussed in Trieber's Ph.D thesis and will not appear here because the neutral compound conformations present are not important for the principal thrust of this paper.

The optical and cyclic voltammetric (CV) data at room temperature are summarized in Table 1. We note that anti and syn diastereomers give data that are usually within statistical error of being the same, and principally provide a check on nonsystematic errors. Significant overlap of the $0,1+$ and $1+, 2+$ oxidation waves is present in the cyclic voltammograms for all compounds, and formal oxidation potential (E°) values were

[^3]Table 1. Room Temperature (296 K) Optical Band and ΔG_{c} Values

compound	$d_{\mathrm{N}, \mathrm{N},}{ }^{\text {a }}$ ¢	$d_{12},{ }^{a} \AA$	solv	$E_{\text {op }}, \mathrm{cm}^{-1}$	Q	μ_{12}, D	$d_{a b},{ }^{,}$®	$H_{a b},{ }^{a} \mathrm{~cm}^{-1}$	$\Delta G_{\mathrm{c}}, \mathrm{cm}^{-1}$
Bis(hydrazines) with Saturated Bridges									
$\mathbf{2 2} \mathbf{H}^{+b}$	4.91	3.98	AN	16300		1.95	4.06	1490	1450
			NM	16200		2.03	4.07	1520	
			PrCN	16100		1.98	4.06	1480	
			DMF	15900		2.02	4.07	1460	
			DMSO	15900		2.14	4.08	1520	
			$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	15400	-	2.14	4.08	1490	1200
$\mathbf{S B I 4 T}{ }^{+}{ }^{\text {c }}$	4.88	3.99	AN	18000	0.19	1.73	4.05	1460	1650
			PrCN	17900		1.69	4.05	1400	
			DMF	18600		1.68	4.05	1420	
			$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	16400	0.23	1.76	4.06	1320	1700
$\mathbf{a B I} \mathbf{6} \sigma^{+d}$	7.22	5.92	AN	21100	0.19	0.95	5.93	640	650
			PrCN	20700	0.19	0.97	5.93	630	600
			DMF	21600	0.18	0.89	5.93	600	650
			PhCN	20000	0.19	1.10	5.94	670	600
			$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	18000	0.18	0.97	5.93	550	500
SBI6 σ^{+d}	7.22	5.92	AN	21100	0.19	0.94	5.94	630	650
			PrCN	20700	0.19	0.95	5.94	620	500
			DMF	21700	0.19	0.89	5.94	600	550
			PhCN	20000	0.19	1.07	5.94	660	550
			$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	18200	0.18	0.96	5.94	540	500
$\mathbf{S B P 4} \mathbf{T}^{+d}$	4.86	3.85	AN	14700	0.19	1.86	3.93	1320	1450
			Acet	14700	0.19	1.90	3.93	1350	1100
			PrCN	14500	0.19	1.82	3.93	1260	1200
			DMF	15000	0.19	1.82	3.93	1280	1150
			$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	13200	0.19	1.79	3.92	1120	1350
$\mathbf{a B P 6} \sigma^{+d}$	7.19	6.02	AN	17400	0.18	1.14	6.04	620	600
			PrCN	17200	0.18	1.12	6.04	600	400
			DMF	17800	0.18	1.09	6.04	590	500
			DMSO	17800	0.18	1.07	6.04	580	500
			$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	14800	0.19	1.28	6.05	580	300
$\mathbf{S B P 6} \sigma^{+d}$	7.19	6.02	AN	17900	0.17	1.11	6.04	630	550
			PrCN	17400	0.17	1.13	6.04	610	350
			DMF	18100	0.17	1.12	6.04	620	550
			DMSO	18500	0.18	1.06	6.03	590	500
			$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	15200	0.18	1.27	6.04	590	400
$\mathbf{P}_{2} \mathbf{6} \sigma^{+d}$	7.20	6.52	AN	11200	0.20	1.12	6.53	370	550
			Acet	11100	0.19	1.16	6.54	370	500
			PrCN	11100	0.19	1.20	6.54	380	500
			DMF	11500	0.19	1.09	6.53	350	600
			$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10200	0.19	1.25	6.54	360	450
$\mathbf{P H}{ }^{+e}$	Bis(hydrazines) with Aromatic Bridges								
	5.70	4.47	AN	13200	0.11	4.19	4.80	2200	2250
			$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	11100	0.14	6.33	4.80	2480	3000
$\mathbf{D} \mathbf{U}^{+d}$	5.70	4.58	AN	14100	0.20	2.30	4.68	1320	2450
			Acet	14400	0.20	2.29	4.68	1340	2100
			PrCN	14000	0.21	2.28	4.68	1280	2150
			DMF	14700	0.19	2.20	4.67	1280	1900
			DMSO	14700	0.20	2.14	4.67	1220	1950
			$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	12400^{g}		2.48	4.70	1210	2800
$\mathbf{B I}{ }^{+d}$	9.99	8.41	AN	15200	0.02	3.18	8.51	1080	750
			Acet	15300	0.02	3.57	8.54	1210	800
			PrCN	15000	0.03	3.04	8.50	1010	900
			DMF	15500	0.02	2.98	8.50	1000	800
			DMSO	15600	0.03	3.01	8.50	1000	800
			$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$12900^{\text {g }}$		3.57	8.54	1000	
$\mathbf{a B 6} \sigma^{+}{ }^{\text {d }}$ f				zeniums) w	turate	dges			
	7.16	5.62	AN	13100	0.32	1.26	5.64	560	950
			PrCN	12800	0.35	1.23	5.64	520	800
			DMF	13400	0.34	1.14	5.64	500	850
			DMSO	13400	0.35	1.23	5.64	530	900
			$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	11500	0.36	1.27	5.64	480	750
$\mathbf{S B 6} \sigma^{+d, f}$	7.16	5.62	AN	13100	0.31	1.30	5.65	580	950
			PrCN	12800	0.35	1.19	5.64	520	- ${ }^{h}$
			DMF	13400	0.37	1.12	5.64	490	900
			DMSO	13400	0.35	1.16	5.64	500	900
			$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	11500	0.40	1.25	5.64	470	780

${ }^{a}$ N,N distance and d_{12} calculated by AM1 and combined with the experimental μ_{12} value shown to calculate $d_{a b}$ using eq 5 . The $H_{a b}$ values reported here are refractive index corrected using $H_{a b}(n)=3 n^{1 / 2} /\left(n^{2}+2\right) H_{a b}($ Hush $)$: for MeCN at room temperature, $3 n^{1 / 2} /\left(n^{2}+2\right)$ at $296 K=$ 0.914 ; see the Supporting Information for other solvents. Although we doubt that the $H_{a b}$ values are more precise than $100 \mathrm{~cm}^{-1}$, the extra place has been written to emphasize the small decrease that is observed as solvent polarity is reduced (see text). The ΔG_{c} values are rounded to $50 \mathrm{~cm}^{-1}$, although their actual precision is probably closer to about $80 \mathrm{~cm}^{-1} .{ }^{b}$ Data from ref 5. ${ }^{c}$ Data from ref 6. ${ }^{d}$ This work. ${ }^{e}$ Data from ref 4a. ${ }^{f}$ Data reanalyzed and two solvents added since ref $7 .{ }^{g}$ Values from fit to ion pairing equation, extrapolated to free ion values, from ref 20.
determined by simulation of the experimental curves, although only the free energy for comproportionation $\left(\Delta G_{c}\right)$ appears in

Table 1. The $E^{\circ r}$ values, comproportionation equilibrium constants, and the fraction of total bis(hydrazine) present as

Figure 1. Sample fits to optical data at 296 K in acetonitrile. Solid lines: observed spectrum, and quartic-enhanced IV-CT band. Dashed lines, Gaussian fitting curves. Long-dashed line (only apparent when deviation from experimental becomes significant), sum of the calculated bands. (a) sBP6 σ^{+}. (b) $\mathbf{P}_{2} 6 \sigma^{+}$.
radical cation because of disproportionation to the adjacent oxidation states appear in the Supporting Information. Although the previously studied $4-\sigma$-bond bridged saturated compounds have large enough comproportionation constants (fractions of bis(hydrazine) present as radical cation close enough to 1.0) that the stoichiometric concentrations of IV radical cation could be employed in calculating $\epsilon_{\max }$, the $\Delta G^{\circ}{ }_{\mathrm{c}}$ values are small enough for $\mathbf{s B P 4 T}{ }^{+}$and all of the $6-\sigma$-bond bridged compounds that significant amounts of 0 and +2 oxidation states are present in a solution that is formally at the +1 oxidation state because of disproportionation. The stoichiometric +1 oxidation state concentration was corrected using the fractions shown in the Supporting Information in calculation of $\epsilon_{\max }$, and hence of μ_{12} and $H_{a b}$.

The intervalence radical cation oxidation states of all of these compounds have significant charge localization, so $E_{\text {op }}$ should be λ, and eq 3 should give $H_{a b}$. However, overlap of the IVCT band with other bands is appreciable on the high-energy side of the band for the $\mathbf{6} \sigma$-bridged bis(hydrazines), especially those with phenyl substituents. The ET parameters for their IV CT bands were obtained by fitting one to three Gaussian bands at higher energy plus the IV-CT band to the experimental spectrum. This process allowed good fit to the observed spectrum in the range of the IV-CT band. Examples of the type of fit obtained are shown for $\mathbf{~} \mathbf{B P} \mathbf{P} 6 \sigma^{+}$in Figure 1a, where two Gaussians in addition to the IV charge transfer band allowed fit to about $23000 \mathrm{~cm}^{-1}$, and for $\mathbf{P}_{\mathbf{2}} \mathbf{6} \sigma^{+}$in Figure 1b, where three Gaussians were used, allowing fit to within experimental error up to $25000 \mathrm{~cm}^{-1}$. In all cases, fit to the experimental spectrum well beyond \tilde{v} values for which the IV-CT band had
significant absorption was achieved, and the $\lambda_{\max }$ for the IVCT band, and hence $E_{\text {op }}$, was insensitive to fitting to slightly smaller \tilde{v} values, so we believe the $E_{\text {op }}$ values extracted are reliable. As described previously, ${ }^{4}$ most organic IV-CT bands are broader than that which would occur for the simple twostate model if the diabatic surfaces were exactly parabolas, but these bands are well fit using an initial diabatic surface given by $E_{\text {in }}=\left[\lambda X^{2} /(1+Q)\right]\left[1+Q X^{2}\right]$ and a final surface that has the X of $E_{\text {in }}$ replaced by $(1-X)$. Using a quartic term to do the fitting is not significant; other functions serve as well. ${ }^{4 c}$ Plots of Q vs the difference between the observed $\Delta \tilde{v}_{1 / 2}$ value and that calculated using parabolic diabatic surfaces, $\left(16 R T \ln (2) E_{\mathrm{op}}\right)^{1 / 2}$, are quite linear, indicating that Q essentially only represents the increase in broadening over that predicted for parabolic diabatic surfaces. The Q values are nearly independent of solvent, and they are rather independent of other substituents for the $\mathbf{6} \sigma$-bridged bis(hydrazines) having BI, BP, and $\mathbf{P}_{\mathbf{2}}$ substitution and $\mathbf{S B I 4} \mathbf{T}^{+}$, falling in the range $0.17-0.20$ (except 0.23 for $\mathbf{s B I 4 T}{ }^{+}$in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Nevertheless, data for the aromaticbridged bis(hydrazines) and the bis(diazeniums) show that both the structure of the bridge and of the charge-bearing units can affect Q substantially. We do not yet know what structural features control Q, but the band broadening is not principally determined by the effective barrier crossing frequency, as Hush suggested, ${ }^{17}$ because quite different Q values can arise when only the bridge is changed, as shown by the data for $\mathbf{P H}^{+}, \mathbf{D U}^{+}$, and $\mathbf{B I}^{+}$.

Two changes have been made in Table 1 from the optical band analyses previously published for $\mathbf{P H}^{+}, \mathbf{D U}^{+}$, and the compounds with saturated bridges, $\mathbf{2 2} \mathbf{H}^{+}, \mathbf{S B I 4} \mathbf{T}^{+}$, and both diastereomers of $\mathbf{B 6} \sigma^{+}$. The first change involves inclusion of a solvent refractive index (n) correction to $\epsilon_{\max }$, pointed out to be necessary by Young and co-workers. ${ }^{18}$ The largest such correction that we have seen makes $H_{a b}=\left(n^{-1 / 2}\right) H_{a b}($ Hush $) .{ }^{18 a}$ We shall use here the intermediate correction to $\epsilon_{\max }$ proposed by Chacko that Young and co-workers used later, ${ }^{18 \mathrm{~b}}$ eq 3a. The [$\left.3 n^{1 / 2} /\left(n^{2}+2\right)\right]$ factor is 0.91 at room temperature in acetonitrile (MeCN, see Supplementary Information for the values in other solvents). Equation 3a has been used to calculate the μ_{12} and

$$
\begin{equation*}
H_{a b}(n)=\left[3 n^{1 / 2} /\left(n^{2}+2\right)\right] H_{a b}(\text { Hush }) \tag{3a}
\end{equation*}
$$

$H_{a b}(n)$ values that appear in Table 1. The second change involves how the ET distance has been treated. Although the distinction frequently has not been made in the literature, the distance $d_{a b}$ required for eq 3 is on the diabatic surfaces, so it cannot in principle be directly measured, because compounds exist on their adiabatic surfaces. However, the Generalized Mulliken-Hush theory of Cave and Newton ${ }^{19}$ allows one to relate adiabatic d_{12} values to $d_{a b}$ through eq 5 . In this work we combine d_{12} values

$$
\begin{equation*}
d_{a b}^{2}=d_{12}^{2}+4\left(\left|\mu_{12}\right| / e\right)^{2} \tag{5}
\end{equation*}
$$

calculated using AM1 semiempirical calculations as described

[^4]Table 2. Comparison of $d_{12}(\mathrm{ESR})$ and $d_{12}(\mathrm{AM} 1)$ Values (in \AA)

compound	$d_{12}(\mathrm{ESR})^{a}$ $(2+$ ox. state $)$	$d_{12}(\mathrm{AM} 1)^{b}$ $(1+$ ox. state $)$	change c
$\mathbf{\text { sBI6 } \boldsymbol { \sigma }}$	6.88	5.93	-14%
SBP6 $\boldsymbol{\sigma}$	6.88	6.02	-13%
aBP6 $\boldsymbol{\sigma}$	6.91	6.02	-13%
DU	5.58	4.58	-18%
BI	$7.99(7.49)^{d}$	8.41	$+5 \%(+12 \%)$

${ }^{a}$ Calculated as $d_{12}(\mathrm{ESR})=0.650 g^{2} /\left(D^{\prime}\right)^{1 / 3}$, where D^{\prime} is the dipolar splitting of the triplet form of the triplet for of the dication (in cm^{-1}). ${ }^{b}$ Calculated as $2 \mu_{12}(\mathrm{ET}) / e$ for the most stable diastereomer of the radical cation, where $\mu_{12}(\mathrm{et})$ is the largest component of the dipole moment calculated using the center of mass as the origin. See ref 19 for details. ${ }^{c}$ Calculated as $100 \times\left[d_{12}(\mathrm{AM} 1)-d_{12}(\mathrm{ESR}) / d_{12}(\mathrm{ESR})\right]$. The presence of two species, possibly diastereomers, was detected. See ref $4 a$.
in detail elsewhere ${ }^{20}$ with optically determined μ_{12} values to generate the $d_{a b}$ values using eq 5 . For comparison, Table 1 also shows $d_{\mathrm{N}, \mathrm{N}}$, the average N, N distance for the saturatedbridged compounds, and the distance between the nitrogens attached to the aromatic ring for the aryl-bridged compounds (both calculated by AM1). ${ }^{21 \mathrm{a}}$ It may be noted that the $d_{a b}$ values obtained are almost completely determined by the d_{12} value employed: $d_{a b}$ is about 2% larger than d_{12} (AM1) for the $4-\sigma$ bond bridged saturated compounds but it is less than 0.4% larger for the $6-\sigma$-bond bridged ones. It is not obvious how accurate the AM1-calculated d_{12} values actually are. ${ }^{21 \mathrm{~b}}$ For the arylbridged compounds, we previously used a d_{12} estimate from the dipolar splitting of the triplet form of the diradical $2+$ oxidation state, $d_{12}(\mathrm{ESR})$, in calculating the $H_{a b}($ Hush) values (without changing it to a $d_{a b}$ value). An obvious drawback to using $d_{12}(\mathrm{ESR})$ is that N , aryl twist angles (ϕ) are known from X-ray crystallography to be slightly different for the $1+$ and $2+$ oxidation states and $H_{a b}$ should be proportional to $\cos (\phi) .{ }^{4}$ From ESR work done in Osaka ${ }^{22}$ on the $2+$ oxidation states of three 6σ-bridged bis(hydrazine) dications, $\mathbf{s B I} 6 \sigma^{2+}$ and s- and $\mathbf{a B P} 6 \sigma^{\mathbf{2 +}}, d_{12}(\mathrm{ESR})$ values for saturated-bridged compounds have become available and are compared with calculated $d_{12^{-}}$ (AM1) values in Table 2. ${ }^{21 \mathrm{c}}$ The changes of including the $\epsilon_{\max }$ correction and calculating the ET distance differently have opposite effects on the $H_{a b}$ obtained for the saturated-bridged compounds, the n correction lowering it and using $d_{a b}$ estimated using eq 5 instead of using the distance between the dinitrogen units raising it.

[^5]To properly consider the effect of solvent on λ, one must account for ion pairing, if it is present. Ion pairing effects for aromatic-bridged bis(hydrazine) IV compounds, including DU $^{+}$ and $\mathbf{B I}^{+}$, have recently been discussed in detail. ${ }^{23}$ In this work we carried out exactly analogous dilution studies for $\mathbf{a B I} \mathbf{6} \sigma^{+} \mathrm{SbF}_{6}{ }^{-}$ and $\mathbf{a B P} \mathbf{P} \sigma^{+} \mathrm{PF}_{6}{ }^{-}$. The concentration dependence of $E_{\text {op }}$ for both compounds follows that expected for the simple ion pairing equilibrium of eq 6 , that is, eq 7 ,

$$
\begin{gather*}
{\left[\mathbf{A}^{+}\right]+\left[\mathbf{X}^{-}\right] \stackrel{K_{\mathrm{IP}}}{\rightleftharpoons}[\mathbf{A} \mathbf{X}]} \tag{6}\\
E_{\mathrm{op}}=\left(E_{\mathrm{op}}^{\text {free }}+K_{\mathrm{IP}}\left[\mathbf{X}^{-}\right] E_{\mathrm{op}}^{\mathrm{IP}}\right) /\left(1+K_{\mathrm{IP}}\left[\mathbf{X}^{-}\right]\right) \tag{7}
\end{gather*}
$$

where $[\mathbf{A X}]$ is the concentration of ion paired material, $\left[\mathbf{A}^{+}\right]$ and $\left[\mathbf{X}^{-}\right]$are the concentrations of the individually solvated ions, and $E_{\mathrm{op}}{ }^{\text {free }}$ and $E_{\mathrm{op}}{ }^{\mathrm{IP}}$ are for \mathbf{A}^{+}and $\mathbf{A X}$, respectively. Equation 6 assumes that the observed band maximum is a weighted average of the free and ion paired value and has been shown to be sufficient to describe the behavior of $\mathbf{D U}^{+}$and $\mathbf{B I} \mathbf{I}^{+}$. The experimental data were fit to eqs 8 and 9 , as in the previous work. ${ }^{23}$

$$
\begin{gather*}
{[\mathbf{A X}]=\left[\mathbf{A}^{\mathrm{tot}}\right]-\left[\mathbf{A}^{+}\right]} \tag{8}\\
E_{\mathrm{op}}=\left\{2 E_{\mathrm{op}}^{\text {free }}+\left[\left(1+4 K_{\mathrm{IP}}\left[\mathbf{A}^{\mathrm{tot}}\right]\right)^{1 / 2}-1\right] E_{\mathrm{op}} \mathrm{IP}\right\} / \\
\left\{1+\left(1+4 K_{\mathrm{IP}}\left[\mathbf{A}^{\mathrm{tot}}\right]\right)^{1 / 2}\right\} \tag{9}
\end{gather*}
$$

Obviously, experimental data would not necessarily be described by these relatively simple equations, but in practice, it is for $\mathbf{a B I} 6 \sigma^{+} \mathrm{SbF}_{6}{ }^{-}$and $\mathbf{~ a B P 6} \sigma^{+} \mathrm{PF}_{6}{ }^{-}$under the conditions examined $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ solutions, at 296 K , under 3 mM$)$, as indicated graphically in Figure 2. Ion pairing data for bis(hydrazines) are compared in Table 3. As expected, the change in vertical reorganization energy that occurs upon ion pairing, $\Delta G^{\circ}{ }_{\mathrm{ET}, \mathrm{IP}}=$ $E_{\mathrm{op}}^{\mathrm{IP}}-E_{\mathrm{op}}{ }^{\text {free }}$, is smaller than the negative of the free energy for ion pairing, $\Delta G^{\circ}{ }_{\mathrm{IP}}=-R T \ln \left(K_{\mathrm{IP}}\right)$. Their values would only approach each other as the difference in distance between the anion and the center of cationic charge of the two ET forms of the IV compound became very large. As can be seen in Table $3, \Delta G^{\circ}{ }_{\text {IP }}$ is quite insensitive to which bis(hydrazine) was studied and is $4.7 \pm 0.2 \mathrm{kcal} / \mathrm{mol}$ for all four compounds. $\Delta G^{\circ}{ }_{\text {ET,IP }}$ is also not particularly sensitive to structure, falling in the range $1.6-2.6 \mathrm{kcal} / \mathrm{mol}$, with the larger value for the compound with larger N, N distance and the smaller one for the compound with all saturated bridges. From the rather similar sizes of their $\Delta G^{\circ}{ }_{\text {et,IP }}$ values, it seems likely that the average position of the counterion lies not very far from the axis between the hydrazine units in the saturated-bridged systems as well as the aromaticbridged ones, where the counterion position is presumably similar to that in the crystal. For this work, the most important result of the ion pairing study is to establish $E_{\text {op }}{ }^{\text {free }}$ in dichlormethane for these compounds, allowing the $E_{\text {op }}$ value for this solvent to be used in correlations with the more polar solvents, where ion pairing is not a problem at the concentrations studied (on the order of mM). As will be seen by comparing the $\mathrm{CH}_{2} \mathrm{Cl}_{2} E_{\text {op }}$ values from Table 1 with the values in Table 3, partial ion pairing is clearly present for the data recorded in dichloromethane. We have not been able to experimentally detect concentration effects on $E_{\text {op }}$ values for the compounds studied in acetonitrile ($\gamma=0.528$) or DMSO $(\gamma=0.437)$, and we do not believe that ion pairing effects are significant at 1 mM concentration in solvents having γ larger than 0.43.
(23) Nelsen, S. F.; Ismagilov, R. F. J. Phys. Chem. A 1999, 103, 5373.

Figure 2. Fits of observed $E_{\text {op }}$ to eq 9 using the best fit parameters of Table 3. (a) $\mathbf{a B P} \mathbf{6} \sigma^{+} \mathrm{SbF}_{6}{ }^{-}$. (b) $\mathbf{a B I} \mathbf{6} \sigma^{+} \mathrm{SbF}_{6}{ }^{-}$.

Table 3. Ion Pairing Data at 296 K in Dichloromethane

species	$K_{\mathrm{IP}}, \mathrm{M}^{-1}$	$\Delta G^{\circ}{ }_{\mathrm{IP}}$, $\mathrm{kcal} / \mathrm{mol}$	$E_{\mathrm{op}}{ }^{\text {free }}$ cm^{-1}	$E_{\mathrm{op}}{ }^{\mathrm{IP}}$, cm^{-1}	$\Delta G^{\circ}{ }_{\mathrm{ET}, \mathrm{IP},}$, $\mathrm{kcal} / \mathrm{mol}$
$\mathbf{a B I 6} \sigma^{+} \mathrm{SbF}_{6}{ }^{-}$	3800	-4.9	17800	18300	1.6
$\mathbf{a B P 6}^{+} \mathrm{PF}_{6}{ }^{-}$	2200	-4.6	14300	15100	2.2
$\mathbf{D U}^{+} \mathrm{PF}_{6}{ }^{-}$	3100	-4.7	12400	13100	2.0
$\mathbf{B I}^{+} \mathrm{PF}_{6}{ }^{-}$	3100	-4.7	12900	13800	2.6

Variable temperature optical studies were also carried out for $\mathbf{a B I 6} \sigma^{+}, \mathbf{s B I 6} \sigma^{+}, \mathbf{a B P} 6 \sigma^{+}$, and $\mathbf{s B P} 6 \sigma^{+}$in acetonitrile, butyronitrile (PrCN), dimethylformamide (DMF), and methylene chloride, but dimethyl sulfoxide (DMSO) was used instead of butyronitrile for the $\mathbf{B P 6} \sigma^{+}$diastereomers. The full results appear in the Supporting Information, along with the data for $\mathbf{D U}^{+}$and $\mathbf{B I}^{+}$in acetonitrile ${ }^{4 \mathrm{c}}$ that have been refit using the methodology of this paper. The Q values for the σ-bridged compounds were all $0.21-0.22$ at 260 K and dropped linearly within experimental error, with temperature to $0.15-0.17$ at 322 K. The $H_{a b}$ values obtained also decrease slightly as temperature is increased, -0.26 to $-0.36 \mathrm{~cm}^{-1} / \mathrm{K}$ for $\mathrm{MeCN},-0.13$ to -0.25 for $\operatorname{PrCN},-0.07$ to -0.22 for DMF, and -0.11 to -0.24 for $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (the -0.23 and $-0.42 \mathrm{~cm}^{-1} / \mathrm{K}$ values for the $\mathbf{B P} \mathbf{6} \sigma^{+}$ diastereomers in DMSO are unlikely to be very accurate because only a 26° temperature range was available; see Supporting Information). The $E_{\text {op }}$ values also decrease slightly as the temperature is increased; see the Discussion section.

Of the saturated-bridged compounds discussed here, only the $6-\sigma$-bond bridged bis(hydrazyls) ${ }^{7}$ and the $4-\sigma$-bond bridged bis(hydrazines) $\mathbf{2 2} \mathbf{H}^{+5}$ and $\mathbf{B I} \mathbf{4} \mathbf{T}^{+6}$ have the electron-transfer rate constant k_{ET} near 10^{8} at convenient temperature, allowing accurate measuring of the electron-transfer rate constant by ESR. The ESR spectra of $\mathbf{a B P} \mathbf{6} \sigma^{+}$were examined in $\mathrm{MeCN}, \operatorname{PrCN}$,
and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ between 250 and 350 K , but the spectra were indistinguishable from localized ones (as predicted from the optical spectra), and k_{ET} would be even smaller for $\mathbf{B I} 6 \sigma^{+}$. The $k_{\text {ET }}$ predicted even for $\mathbf{P}_{\mathbf{2}} \mathbf{6} \sigma^{+}$is slightly too slow for accurate measurement by ESR. These compounds were selected for study of their optical spectra even though ET rate constant data cannot be obtained for them using ESR.

Discussion

Separation of λ_{v} from λ_{s}. Only compound $\mathbf{2 2} \mathbf{H}^{+}$of those considered here follows the DCT prediction that $E_{\text {op }}$ will correlate with $\gamma .{ }^{5}$ As pointed out previously, ${ }^{4,6,7}$ there is a distinct tendency for higher $E_{\text {op }}$ than the DCT prediction for solvents with greater donicity (higher DN) for the other compounds. It is not obvious why $\mathbf{2 2} \mathbf{H}^{+}$is the only compound studied that is insensitive to solvent donicity effects, but structurally it is the only compound that has all of its $\mathrm{NC}-\mathrm{H}$ substituents directed anti to the NN bond and might have the most hindered approach for solvent to the nitrogens. Even though we know k_{ET} from ESR studies for several of the compounds studied, this information does not help to separate λ_{v} from λ_{s} because these reactions are nearly adiabatic and k_{ET} is only sensitive to their sum. Accurate separation of λ_{v} from λ_{s} is, however, required for application of modern vibronic coupling ET theory to these compounds and for comparison of inter- and intramolecular ET (see below). Attempted separation of λ_{s} from λ_{v} using the usual averaged single frequency version of vibronic coupling theory fails for these compounds because of great sensitivity of the result to the value of the parameter $\tilde{\mathcal{v}}_{\mathrm{v}}$, and the fact that λ_{v} must be unreasonably temperature dependent is observed if a constant \tilde{v}_{v} is employed. ${ }^{4,6,7}$ Matyushov's molecular solvent theory ${ }^{24}$ that includes both dielectric continuum and density variation effect rationalizes the observed decrease in $E_{\text {op }}$ (and therefore in λ_{s}) as temperature is decreased (for all compounds studied in all solvents, see ref 4 c and the Supporting Information). Matyushov's solvent theory, like that Marcus used, assumes that the only effect of changing the bridge is to change the distance between the charge-bearing units and does not accommodate specific solvent, solute interactions such as DN dependence that we observe.

A simpler method that is more closely related to classical Marcus theory seems desirable in separating λ_{s} and λ_{v}. The problem in fitting experimental data for IV compounds to equations containing γ for the purpose of separating λ_{s} from λ_{v} has always been that to get a large enough range in γ to obtain a reasonably accurate slope and hence intercept, it is necessary to include relatively nonpolar solvents, but as solvent polarity drops, ion pairing that will make photoinduced electron transfer endoergonic occurs, increasing $E_{\text {op }}$ without necessarily changing λ. In an attempt to get a more useful expression for correlating solvent changes upon E_{op}, but keep as close to the Marcus framework as possible, we use fits to an empirical expression having both γ and DN terms, ${ }^{25}$ eq 10 . It may be noted that the

$$
\begin{equation*}
E_{\mathrm{cor}}=A+B(\gamma)+C(\mathrm{DN}) \tag{10}
\end{equation*}
$$

A term in eq 10 is the only solvent-independent term, so A ought to be the internal vibrational component of $\lambda, \lambda_{\mathrm{v}}$. Best fits to eq 10 are included in Table 4. Figure 3 shows graphically using the data for $\mathbf{D} \mathbf{U}^{+}$that including the $C(\mathrm{DN})$ term greatly improves the correlation and hence the presumed reliability of the solventindependent component of λ. The average root mean square (rms) deviations from the best fit lines (shown in the rms fit column of Table 4) are mostly well under the ca. $100 \mathrm{~cm}^{-1}$

Table 4. Fits of $E_{\mathrm{op}}\left(\mathrm{cm}^{-1}\right)$ to Eq 10 To Separate λ_{v} from λ_{s} (given in $\mathrm{kcal} / \mathrm{mol})^{a}$

ion	A	$B \mathrm{fit}{ }^{\text {b }}$	C	rms	$\lambda_{\mathrm{v}}{ }^{\text {c }}$	$\lambda_{\mathrm{s}}(\mathrm{MeCN})^{d}$	\%DN
Bis(hydrazines) with Saturated Bridges							
$\mathbf{2 2 H}{ }^{+}$	14300	3800	-3	41	40.8	5.7	-2
sBI4T ${ }^{+}$	13050	6810	93	60	37.3	14.1	27
aBI6 $\boldsymbol{\sigma}^{+}$	13110	12150	107	60	37.5	22.6	19
sBI6 σ^{+}	13130	12100	109	71	37.5	22.7	19
sBP4T ${ }^{+}$	9450	8180	68	52	27.0	15.1	18
aBP6 $\boldsymbol{\sigma}^{+}$	9770	11870	97	45	27.9	21.8	18
sBP6 $\boldsymbol{\sigma}^{+}$	9330	12970	113	98	26.7	24.1	19
$\mathbf{P}_{\mathbf{2}} \mathbf{6} \boldsymbol{\sigma}^{+}$	6960	6530	58	24	19.9	12.1	19
Bis(hydrazines) with Aromatic Bridges							
$\mathbf{P H}^{+}$	9810	5600	32	21	28.1	9.7	13
DU^{+}	10100	5800	69	65	28.9	11.5	24
$\mathbf{B I}^{+}$	9500	9100	70	55	27.2	16.5	17
Bis(diazeniums) with Saturated Bridges							
aB6 $\boldsymbol{\sigma}^{+}$	5610	11960	86	29	16.0	21.5	16
$\mathbf{s B 6} \boldsymbol{\sigma}^{+}$	5530	12080	87	25	15.8	21.7	16

${ }^{a}$ Because of ion pairing, methylene chloride was excluded from the correlation except for cases where $E_{\text {op }}$ (free) is known from ion pairing studies ($\mathbf{a B I 6} \sigma^{+}, \mathbf{a B P 6} \sigma^{+}, \mathbf{D U}^{+}, \mathbf{B I}{ }^{+}$), benzonitrile was excluded for $\mathbf{a -}$ and $\mathbf{s B I} \mathbf{6} \sigma^{+}$and pyridine for $\mathbf{P} \mathbf{H}^{+} .{ }^{b} \mathrm{rms}$ fit is $\left[\sum(\mathrm{Dev})^{2} / n\right]^{1 / 2}$, where Dev is $E_{\text {op }}$ (eq 10) - (regression line value) and n is the number of solvents used. ${ }^{c} A$ converted to $\mathrm{kcal} / \mathrm{mol} .{ }^{d}\left(E_{\mathrm{op}}-A\right)$ converted to kcal/ mol.

Figure 3. $E_{\text {op }}$ data for $\mathbf{D U}^{+}$plotted vs the Pekar factor, γ. Filled circles, experimental data. For $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ the $E_{\text {op }}$ value at 1 mM concentration is shown as a square, and the extrapolated free ion and ion paired values (Table 3) as a circle and diamond, respectively. The open circles show best fit to eq 10 as a plot of $A+B \gamma$ vs γ, so the vertical deviations of the experimental points from the calculated ones is $C(\mathrm{DN})$. Because DN for $\mathrm{CH}_{2} \mathrm{Cl}_{2}=0$, the experimental and calculated points fall on top of each other in this plot.
($0.3 \mathrm{kcal} / \mathrm{mol}$) accuracy with which we estimate we can measure $E_{\text {op }}$ for these compounds. Simple proportionality with DN may well not accurately describe the entire contribution of non-DCT effects to $E_{\text {op }}$, but including this term unquestionably straightens the correlation lines.

We believe it should be noted that finding fit to an empirical equation such as (10) invites misinterpretation. Perfect fit for any data observed will be obtained for three solvents using a three-parameter fit, and if these solvents are chosen to span the "polarity" and "donicity" ranges (however these terms are defined), and the other solvents have approximately intermediate properties, reasonable fit is likely to be found even if the situation is considerably more complicated. For example, comparable fit is obtained using either ion paired or free ion values for $E_{\mathrm{op}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ in Table 4, but changing $E_{\mathrm{op}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ this amount causes quite noticeable changes in the fitting constants. The fact that inserting a DN term improves correlation

Scheme 2

lines for solvent effects on $E_{\text {op }}$ does not really indicate that solvent donicity "causes" these changes. Knowing the fitting constants for one compound does not appear to allow predicting them, even for rather similar ones. We suggest that this indicates that changes in $E_{\text {op }}$ may not really be principally controlled by bulk solvent parameters such as DN and γ. They instead might be influenced significantly by solvation of the bridge, which would account for the differences observed even when the charge-bearing units \mathbf{M} are the same. This means that for accurate prediction of $E_{\text {op }}$, one might very well need to be able to estimate the size of specific solvent/counterion, solute interactions, and not just treat an intervalence compound as idealized charged spheres fixed at a given distance. The much more complex finite-difference method solution to the PoissonBoltzmann equations for the entire system being studied, developed by Honig and co-workers, ${ }^{26}$ has become extremely popular for estimating solvation energies of proteins and is starting to be applied to some ET problems. ${ }^{27}$

The only significance that we hope to attach to the empirical fits to eq 10 shown in Table 4 is the ability to extract useful λ_{v} values, which we equate with the A fitting parameter. This assumes that changing solvent affects λ_{s} but does not affect λ_{v}. λ_{v} is sensitive to the conformations of both oxidation states, and it is certainly conceivable that solvent might affect the conformations. However, the most easily affected significant conformational parameter appears to us to be the N , aryl twist angle ϕ for the aryl-bridged systems, and since $H_{a b}$ is proportional to $\cos \phi$ at each N , aryl bond and has been found to be solvent independent within experimental error (see below), we doubt that very large changes in conformation are occurring as solvent is changed for these compounds. The A values also lie in the expected order for λ_{v}. The highest λ_{v} values are known to be for compounds having all four hydrazine substituents saturated, and $\mathbf{2 2} \mathbf{H}^{+}$, at $40.8 \mathrm{kcal} / \mathrm{mol}$, has the largest value. We shall consider the other compounds by grouping them according to their monohydrazine charge-bearing units, illustrated in Scheme 2. The three compounds having 22/tBuiPr charge-bearing units (sBI4T ${ }^{+}$and $\mathbf{s}-$ and $\mathbf{a B I} \mathbf{6} \sigma^{+}$), for which flattening has been introduced by including a tert-butyl group, have the same λ_{v} value within experimental error, 37.3-37.5 $\mathrm{kcal} / \mathrm{mol}$. The three saturated-bridged compounds having 22/ $\mathbf{t B u P h}$ charge bearing units ($\mathbf{s B P 4 T}{ }^{+}$and $\mathbf{s}-$ and $\mathbf{a B P} 6 \sigma^{+}$) have smaller λ_{v} in the range $26.7-27.9 \mathrm{kcal} / \mathrm{mol}$. A decrease in λ is

[^6]expected because replacing an isopropyl group by phenyl causes more flattening, which makes the pyramidalities at nitrogen of the oxidized and reduced hydrazine units closer. Quite strikingly, λ_{v} for the aryl-bridged compounds that share the same 22/tBuPh charge-bearing unit, $\mathbf{P H}^{+}$and $\mathbf{B I}^{+}$, are within experimental error of being the same, $27.2-28.1 \mathrm{kcal} / \mathrm{mol}$. The λ_{v} for $\mathbf{D U}^{+}$, for which the additional methyl groups cause twisting of the hydrazine unit even more out of conjugation with the aryl ring, has only a slightly larger $\lambda_{\mathrm{v}}, 28.9 \mathrm{kcal} / \mathrm{mol}$. The single $\mathbf{2 2} / \mathbf{P h}_{\mathbf{2}}$ charge-bearing unit compound studied, $\mathbf{P}_{\mathbf{2}} \mathbf{6} \sigma^{+}$, has another large decrease in λ_{v}, to $19.9 \mathrm{kcal} / \mathrm{mol}$, while the smallest λ_{v} values are found for the bis(diazenium) salts s- and $\mathbf{a B 6} \sigma^{+}$, at $15.8-$ $16.0 \mathrm{kcal} / \mathrm{mol}$.

Comparison of Intra- and Intermolecular ET. The above comparison establishes that the λ_{v} values in Table 4 are internally consistent, but whether they are correct is a much more difficult question to answer. Even though we know rate constants for intramolecular ET for many of these compounds, this information does not help establish the correctness of the λ_{s}, λ_{v} separation made here, because k_{ET} may be accurately calculated for these nearly adiabatic ET reactions without separating the components of λ and because λ_{v} is so large that use of the single averaged frequency vibronic coupling theory equation introduced by Jortner, which does depend on the λ_{s}, λ_{v} separation, is inaccurate for these compounds. ${ }^{4}$ However, separation of λ_{s} from λ_{v} is certainly required to allow comparison of intermolecular and intramolecular ET because the λ_{s} values obviously will differ greatly. In collaboration with Jack Pladziewicz (UW-Eau Claire), we have been successfully analyzing intermolecular ET rate constant data between different partners using Marcus cross rate theory to extract intrinsic rate constants and hence Eyring barriers to self-ET that give best fit to cross reactions ($\Delta G^{\ddagger}{ }_{\text {ii }}$ (fit)). ${ }^{28}$ These ΔG^{\ddagger} values cannot be equated with the ΔG^{*} values of ET theory; however, it is necessary to know $H_{a b}$ to obtain ΔG^{*} and hence λ values for these reactions. Recently, ${ }^{28 d}$ we showed that slightly modified Levich and Dogodnaze theory (eq 11) that employs only λ and $H_{a b}^{\prime}=$

$$
\begin{equation*}
k_{\mathrm{L} \& \mathrm{D}}=K_{\mathrm{e}}(2 \pi / \bar{h}) H_{\mathrm{ab}}^{2}(4 \pi R T \lambda)^{-1 / 2} \exp \left[-\Delta G^{*} / R T\right] \tag{11}
\end{equation*}
$$

$\left(K_{\mathrm{e}}\right)^{1 / 2} H_{\mathrm{a}}{ }^{29}$ successfully analyzes the rate constants in terms of semiclassical ET theory. The conclusions we reached might be considered surprising because they differ from what many workers in the area have assumed controls all ET reactions. ${ }^{28 \mathrm{~d}}$ We concluded that for tetra- α-branched hydrazines reacting with a wide variety of compounds, the effective $H_{a b}$ is quite surprisingly constant and has a very small magnitude ("perhaps $10^{-2} \mathrm{kcal} / \mathrm{mol}$ "), so that $\lambda / 4$ values for these intermolecular ET reactions are numerically the same as ΔG^{*} values. We also concluded that $\lambda_{s} / 4$ values for intermolecular ET in acetonitrile are not very sensitive to compound size and are slightly less than $2 \mathrm{kcal} / \mathrm{mol}$ (because the most reactive compound has a ΔG^{*} barrier close to $\left.2 \mathrm{kcal} / \mathrm{mol}\right){ }^{28 \mathrm{~d}}$ Table 5 compares the intermolecular intrinsic ΔG^{*} values obtained for the monohydrazines that are incorporated as \mathbf{M} units in the IV compounds

[^7]Table 5. Comparison of Inter- and Intramolecular ET Barriers (in kcal/mol)

	intermol. compound $\Delta G^{\ddagger}{ }_{\mathrm{ii}}(\mathrm{fit})^{a}$	intermol. $\Delta G^{*}=\lambda / 4^{b}$	intramol. $\lambda_{\mathrm{v}} / 4^{c}$	intramol. $\lambda_{\mathrm{s}} / 4(\mathrm{MeCN})^{d}$
$\mathbf{2 2 / t B u i P r}$	15.8	11.1	9.4	1.7
22/tBuPh	13.3	8.7	6.8	1.9
$\mathbf{2 2 / P h}_{\mathbf{2}}$	11.0	$6.4(6.9)$	5.0	$1.4(1.9)$

[^8]Table 6. Comparison of Acetonitrile $\lambda_{s} / 4$ Values for IV Compounds Having 22/tBuPh Charge-Bearing Units

compound	bridge type	bonds a	$\mathrm{~d}_{\mathrm{ab}}{ }^{\mathrm{b}}$	$\lambda_{\mathrm{v}} / 4^{c}$	$\lambda_{\mathrm{s}} / 4(\mathrm{MeCN})^{c}$
$\mathbf{s B P 4 T}$		sat.	4	3.93	6.7
$\mathbf{s B P 6} \boldsymbol{\sigma}^{+}$	sat.	6	6.04	7.0	3.8
$\mathbf{a B P 6} \boldsymbol{\sigma}^{+}$	sat.	6	6.64	6.7	6.5
$\mathbf{P H}^{+}$	aryl	5	4.83	7.0	2.0
$\mathbf{B I}^{+}$	aryl	9	8.51	6.8	4.1

${ }^{a}$ Number of bonds (by the shortest path) between the charge-bearing units. ${ }^{b}$ From Table 1. ${ }^{c}$ From Table 4.
studied here (Scheme 2) with the $\lambda_{\mathrm{v}} / 4$ values obtained from solvent studies of the IV compounds. The intramolecular $\lambda_{\mathrm{v}} / 4$ values are seen to be completely compatible with the $\lambda / 4$ values obtained from the intermolecular ET data assuming that $H_{a b}^{\prime}$ is $0.01 \mathrm{kcal} / \mathrm{mol}$. The value included in parentheses for $\mathbf{2 2} / \mathbf{P h}_{\mathbf{2}}$ is calculated for $H^{\prime}{ }_{a b}=0.016$, to demonstrate how sensitive the ΔG^{*} values are to the $H_{a b}^{\prime}$ value employed. The last column shows the intermolecular $\lambda_{s} / 4$ values obtained by combining the inter- and intramolecular data. A constant $H_{a b}^{\prime}$ value of 0.01 $\mathrm{kcal} / \mathrm{mol}$ indeed produces a nearly constant $\lambda_{\mathrm{s}} / 4$ value just under $2 \mathrm{kcal} / \mathrm{mol}$, and if $H_{a b}^{\prime}$ actually is slightly larger for $\mathbf{2 2} / \mathbf{P h}_{\mathbf{2}}$ (which would make the λ_{s} obtained more constant), it is not very much larger.

The compatibility of the inter- and intramolecular λ values in Table 5 encourages us to believe that the λ_{v} values shown in Table 4 are reasonably accurate and therefore that the λ_{s} values obtained using them need to be considered. We note from the last column of Table 4 that except for the anomalous $\mathbf{2 2 H}{ }^{+}$the $C(\mathrm{DN})$ term of λ_{s} constitutes a significant contribution, corresponding to $13-27 \%$. This means that DCT calculations of λ_{s} will not work well for these compounds. Table 6 shows $d_{a b}$ values and $\left[\lambda_{\mathrm{s}} / 4\right](\mathrm{MeCN})$ values for the IV compounds having $\mathbf{M}=\mathbf{2 2} / \mathbf{t B u P h}$, which demonstrates that although λ_{s} increases significantly as the bridge is enlarged, it is rather sensitive to whether the bridge consists of saturated or aryl hydrocarbon fragments. This demonstrates that sovent theories that estimate λ_{s} from properties of two \mathbf{M} units and a distance imposed by the bridge will not work well for these compounds.

Solvent Sensitivity of $\boldsymbol{H}_{\mathrm{ab}}$. We carry an additional place for the accuracy of $H_{a b}(n)$ reported in Table 1 over that we estimate to be significant (about $100 \mathrm{~cm}^{-1}$) to make a point. The $H_{a b}(n)$ values are systematically highest in acetonitrile and lowest in methylene chloride. The decrease corresponds to about 14% for bis(hydrazines) $\mathbf{B I} 6 \sigma^{+}$and $\mathbf{B P 4 T}{ }^{+}$and bis(diazeniums) $\mathbf{B 6} \sigma^{+}$and less for all the rest of the data. This solvent sensitivity is quite small compared to what has been argued for dicydbridged ruthenium-centered compounds. ${ }^{8}$ It is not completely obvious to us that the solvent variation of $H_{a b}(n)$ reported in Table 1 does not arise from some artifact. For example, the $\left[3 n^{1 / 2} /\left(n^{2}+2\right)\right]$ term of eq 3a may not accurately describe the inherent dependence of $\epsilon_{\max }$ upon solvent for these compounds. It has been pointed out that solvent as well as substrate in
principle affects $H_{a b}$ and that quite large effects rather clearly caused by solvent-coupled $H_{a b}$ increases are seen for intramolecular charge recombination in $\mathbf{D}^{+}-\mathbf{B}-\mathbf{A}^{-}$molecules specially constructed to have a very small through-bond coupling, but which hold their charge-bearing units rather close in space but far enough apart to accommodate a solvent molecule. ${ }^{27 c}, 30$ Much smaller effects are shown by organic-centered molecules without this special structural feature. Delocalized IV compounds that show vibrational fine structure in their IV-CT bands so that the 0,0 band position may be accurately located allow far more accurate optical determination of $H_{a b}$ than do any localized compounds, because $E_{\mathrm{op}}=2 H_{a b}$ for delocalized compounds, and $E_{\text {op }}$ can be determined to about $15 \mathrm{~cm}^{-1}$ accuracy. For two tetraalkyl p-phenylenediamine derivatives and the tetramethylbenzidine radical cation, the optical $H_{a b}$ value decreases detectably as n increases, but the range is only 1 to 2% between DMSO and MeCN, and there is a lot of scatter in a plot vs $n^{-1 / 2.31}$ We conclude that any solvent sensitivity of the $H_{a b}$ values of the compounds under discussion is small enough that experimental errors in obtaining $H_{a b}$ might be responsible for all of the variation seen.

Thermodynamics for Comproportionation. Crutchley and co-workers have provided the most recent and extensive use of the thermodynamics for disproportionation to measure $H_{a b} .{ }^{8}$ They used the equivalent of eq 12 for determining $H_{a b}$ values

$$
\begin{equation*}
\Delta G_{\mathrm{c}}=R T \ln (4)+2\left[H_{a b}(\mathrm{CV})\right]^{2} / E_{\mathrm{op}}-J+\Delta G_{\mathrm{s}} \tag{12}
\end{equation*}
$$

from ΔG_{c} values, where the $R T \ln (4)$ term $\left(287 \mathrm{~cm}^{-1}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$ and the factor of 2 in the term containing $H_{a b}(\mathrm{CV})$ arise statistically. ΔG_{s} represents all nonexchange solvation contributions and was evaluated as the sum of an inductive term, ΔG_{i} (considered to be the same in all solvents for a given intervalence compound), and a DCT term, ΔG_{e} (see below). The $2\left[H_{a b^{-}}\right.$ $(\mathrm{CV})]^{2} / E_{\text {op }}$ term is the stabilization energy for the two molecules of the IV compound involved in the equilibrium, and $-J$ term (half the singlet, triplet splitting) arises from stabilization of the diradical oxidation state singlet by electron exchange, and had not been included in prior analyses of $\Delta G_{\mathrm{c}} .^{32}$ The DCT term ΔG_{e} was evaluated using eq 13 , where ϵ_{S} is the static

$$
\begin{equation*}
\Delta G_{\mathrm{e}}=\left(4 \pi \epsilon_{\mathrm{S}} \epsilon_{\mathrm{o}} d\right)^{-1}=1.16 \times 10^{5}\left(\AA^{-1} \mathrm{~cm}^{-1}\right) / d \epsilon_{\mathrm{S}} \tag{13}
\end{equation*}
$$

dielectric constant. Crutchley and co-workers used a constant $d=13.1 \AA$ (the Ru, Ru distance) for all dicyd derivatives and assumed that $\Delta G_{\mathrm{s}}\left(\mathrm{cm}^{-1}\right)=120+8854\left(\epsilon_{\mathrm{S}}\right)^{-1}$ for dicyd derivatives.

This comproportionation method can only be very accurate for larger $H_{a b}$ compounds, because the relatively small $H_{a b}$ values for the $6-\sigma$-bond bridged compounds we studied make ΔG_{c} not very much larger than the statistical term, making the two oxidation waves overlap badly, and preclude much accuracy in either measuring ΔG_{c} or estimating $H_{a b}(\mathrm{CV})$ from it. We shall consider the changes in the larger ΔG_{c} values for DU^{+} here. ${ }^{33}$ The optical measurements show that $H_{a b}(n)$ for $\mathbf{D} \mathbf{U}^{+}$is rather insensitive to solvent, as might be expected because its

[^9]Table 7. Comparison of ΔG_{s} for DU^{+}with Expectation from Dielectric Continuum Theory

solvent	$\Delta G_{\mathrm{s}}{ }^{a}$	rel. $\Delta G_{\mathrm{s}}{ }^{b}$	rel. $\Delta G_{\mathrm{e}}{ }^{c}$
AN	1900	$\equiv 1$	$\equiv 1$
acet	1600	0.82	1.75
DMSO	1400	0.73	0.77
DMF	1400	0.72	0.98
PrCN	1400	0.71	1.45
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	2300	1.18	4.03

${ }^{a}$ Unit: cm^{-1}. Using eq 12 replacing $H_{a b}(\mathrm{CV})$ by $H_{a b}($ Hush $)$, and using $-J=72 \mathrm{~cm}^{-1} .{ }^{b} \Delta G_{\mathrm{s}}($ solvent $) / \Delta G_{\mathrm{s}}(\mathrm{AN}) .{ }^{c} \Delta G_{\mathrm{e}}($ solvent $) / \Delta G_{\mathrm{e}}(\mathrm{AN})$ using eq 13 , that is, $\epsilon_{\mathrm{S}}(\mathrm{AN}) / \epsilon_{\mathrm{S}}($ solvent $)$.
formally positively charged nitrogens appear to be well protected from direct interaction with the solvent by the bulky groups attached to them. The exchange coupling in $\mathbf{D U}^{2+}(-J)$ has also been shown to be rather insensitive to conditions. SQUID measurements on polycrystalline $\mathbf{D U}^{2+}\left(\mathrm{Ph}_{4} \mathrm{~B}^{-}\right)_{2}$ gave $-J=72$ $\pm 5 \mathrm{~cm}^{-1}$, while the less accurate method of ESR intensity measurements in a mixed solvent glass (1:1:1 AN,PrCN,MC) gave $63 \mathrm{~cm}^{-1} .4 \mathrm{a}, 22$ As expected for a strongly trapped compound, $-J$ makes only a small contribution to ΔG_{c} for $\mathbf{D U}^{+}, \sim 3 \%$ in AN. Because $H_{a b}$ does not vary much with solvent and J probably does not and is small anyway, ΔG_{s} for $\mathbf{D U}^{+}$can be extracted accurately from the experimental values for $H_{a b}(n)$, $-J$, and ΔG_{c} using eq 12 with $H_{a b}(\mathrm{CV})$ replaced by $H_{a b}(n)$, and considered independently (see Table 7). The only component of ΔG_{s} that changes with solvent using DCT is ΔG_{e}, so this theory predicts that changes in ΔG_{s} should correlate with changes in ΔG_{e}. Table 7 shows that this is not the case. Because DMF and MeCN have almost the same ϵ_{S}, the electrostatic term ΔG_{e} of eq 13 should be almost the same size for these two solvents, but a large decrease in ΔG_{s} is found experimentally in DMF, which is a considerably more donating solvent.

Considering ΔG_{c} data for other compounds (see Table 1), the DCT expression (13) does not explain the changes with solvent for them either. There is a qualitative difference between bridge types comparing methylene chloride with other solvents. The saturated-bridged compounds show smaller ΔG_{c} values in MC than in DMF and MeCN, while the aromatic-bridged compounds show larger ones. It will be noted that using eq 12 assumes that changes in ΔG_{s} with solvent are completely described by DCT, and no provision is made for the solvent donicity effects that rather clearly are important for the compounds under discussion. Solvent stabilization for all three oxidation states $(0,1+$, and $2+)$ contribute to ΔG_{c}. For the aromatic-bridged compounds, the sum of solvent stabilization by more donating solvents for the $2+$ and 0 oxidation state forms is apparently more than double that for the $1+$ oxidation state, because more donating solvents tend to lower ΔG_{c}, but the reverse occurs for the saturated-bridged compounds. As for the solvent effects on $E_{\text {op }}$ that are considered above, solely dielectric continuum considerations do not fit the experimental data. Solvent donicity effects fairly obviously need to be included to correlate ΔG_{c} values for our compounds. Although solvent effects on ΔG_{c} values can also be correlated with a three-term equation using $\left(\epsilon_{\mathrm{S}}\right)^{-1}$ and DN , the correlation coefficients are not useful in the sense that they provide no ability to predict the values for even closely related compounds, and we shall not consider them here. It seems clear that $H_{a b}(\mathrm{CV})$ values obtained using eq 12 are not useful for our compounds, because of specific solvation effects, so eq 13 cannot be used to extract reliable $H_{a b}$ values using eq 12 . The $E_{\text {op }}$ and the ΔG_{c} values for these compounds both show large deviations from the behavior predicted by simple DCT. As we discussed else-
where, ${ }^{10}$ the compounds Crutchley and co-workers studied have such large $H_{a b}$ values relative to λ that there are significant problems using Hush theory to evaluate $H_{a b}$.

Conclusions

Obtaining useful intervalence charge transfer (IV-CT) band transition energies ($E_{\text {op }}$ values) requires computer simulation to deconvolute the IV-CT band for the 6σ-bond linked systems, where overlap of this band with higher energy optical bands is a problem. The E_{op} values for several bis(hydrazine) and bis(hydrazyl) IV radical cations correlate nearly linearly with a three-term empirical equation containing terms linear with the Pekar factor (γ) and the Gutmann donor number (DN). Although these correlations have no predictive value, the solventindependent term appears to be a useful estimate of λ_{v} when the free ion value is used for solvents in which ion pairing is significant, such as methylene chloride. The λ_{v} values so obtained are nearly constant for intervalence compounds having the same charge-bearing units when the bridge is changed, and using these λ_{v} values with self-exchange λ values obtained for intermolecular ET reactions of the monohydrazines gives selfconsistent λ_{s} values for intermolecular ET. The λ_{s} values for intramolecular ET obtained using the λ_{v} values obtained in this work depend significantly upon the bridge structure, so physical modeling of λ_{s} for these compounds assuming that the bridge is inert is not sufficient. The present work shows that the DCT assumption that the static dielectric constant and refractive index of the solvent will adequately explain both vertical solvation energies and the solvent effect on the free energy of comproportionation simply is not true for most of our compounds. Obviously, the organic-centered monocations studied here differ a great deal in structure from transition metal-centered coordination compounds.

Experimental Section

4,10-Di-tert-butyl-5,9-diphenyl-4,5,9,10-tetraazatetracyclo[6.2.2.2 $\left.{ }^{3,6} .0^{2,7}\right]$ tetradecane (sBP4T). Phenyllithium ($3.3 \mathrm{~mL}, 1.8 \mathrm{M}$ in $2: 1$ cyclohexane-ether, 5.9 mmol) was added dropwise to a stirring, ice cold suspension of the syn di-tert-butyldiazenium bis(tetrafluoroborate), ${ }^{34}$ and after stirring for 2 h , a 1:1 water-methanol mixture (30 mL) was carefully added. The aqueous layer was acidified to pH 1 with concentrated HCl and washed with pentane $(2 \times 20 \mathrm{~mL})$. The aqueous layer was basicified using solid KOH and extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and the solvent evaporated, giving 0.6 g of brownish solid. Column chromatography on basic alumina with dichloromethane as eluant followed by sublimation $(0.01 \mathrm{mmHg}, 135$ $\left.{ }^{\circ} \mathrm{C}\right)$ gave $0.59 \mathrm{~g}(80 \%)$ sBP4T as a white solid, $\mathrm{mp} 191-192{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 7.87(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{~m}, 4 \mathrm{H}), 7.05(\mathrm{~d}, 1 \mathrm{H}), 6.88(\mathrm{~m}$, $3 \mathrm{H}), 3.91(\mathrm{~m} 1 \mathrm{H}), 3.48(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.60(\mathrm{~m}, 2 \mathrm{H}), 2.32$ $(\mathrm{m}, 1 \mathrm{H}), 1.96(\mathrm{~m}, 5 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}) 0.94(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 156.07,155.17,127.90,127.84,127.55,120.89,120.59,120.42$, 120.21, 120.11, 119.51, 59.09, 58.40, 57.17, 56.90, 49.30, 48.87, 36.90, $35.50,29.31,28.93,25.35,23.57,19.21,18.51$. Empirical formula $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{~N}_{4}$ established by high-resolution mass spectrometry.

4,5,11,12-Tetraphenyl-4,5,11,12-tetraazahexacyclo[6.6.$\left.1.2^{3,6} \cdot 2^{10,13} \cdot \mathbf{0}^{2,7} \cdot 0^{9,14}\right]$ nonadecane $\left(\mathbf{P}_{2} \mathbf{6} \sigma\right)$. A suspension of the $\mathbf{6} \sigma$ bisazo compound ${ }^{7}(0.27 \mathrm{~g}, 1.0 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was deaerated with an argon stream for 15 min and cooled to $-10^{\circ} \mathrm{C}$ in an iceethanol bath. Phenyllithium ($1.2 \mathrm{~mL}, 1.7 \mathrm{M}$ in $2: 1$ cyclohexane-ether, 2.04 mmol) was added dropwise. After the orange solution was stirred at $-10^{\circ} \mathrm{C}$ for 1 h and at room temperature for 1 h , the solution was cooled in an ice bath and transferred by cannula into an ice-cold solution of iodine (0.53 g ., 2.1 mmol) in ether (50 mL). After 30 min of stirring
(34) Nelsen, S. F.; Wolff, J. J.; Chang, H.; Powell, D. R. J. Org. Chem. 1991, 113, 7882.
at room temperature, the suspension was filtered and the red-brown solid residue was washed with ether. The solid was dissolved in 10 mL of acetonitrile, precipitated by dropwise addition of ether $(100 \mathrm{~mL})$, and dried. The mixture of diphenyldiazeniumdication diiodides obtained as a red-brown powder $(0.58 \mathrm{~g})$ was suspended in 10 mL of THF and cooled in an ice bath, and phenyllithium $(1.2 \mathrm{~mL}, 1.7 \mathrm{M}$ in $2: 1$ cyclohexane-ether, 2.04 mmol) was added dropwise. The mixture was quenched with 30 mL of a $1: 1$ methanol-water mixture after stirring at room temperature for 2 h . Workup as for sBP4T followed by recrystallization from dichloromethane-acetonitrile after chromatography gave $\mathbf{P}_{\mathbf{2}} \mathbf{6} \sigma$ as a white microcrystalline powder, 0.41 g (59% from the azo compound), mp $288-290{ }^{\circ} \mathrm{C}(\mathrm{dec}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, two conformations): $\delta 7.15(\mathrm{~m}, 8 \mathrm{H}), 6.70(\mathrm{~m}, 4 \mathrm{H}), 6.890(\mathrm{~m}, 8 \mathrm{H}), 4.03$ $(\mathrm{m}, 2 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~m}, 2 \mathrm{H}, 1.77-2.02(\mathrm{~m}, 10 \mathrm{H})$, $1.55(\mathrm{~m}, 3 \mathrm{H}), 1.21(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 2\right.$ conformations): δ $150.38,149.5,128.88,128.79,120.13,119.26,117.22,117.04,115.67$, $115.61,54.68,54.40,52.16,46.03,45.91,43.31,43.14,39.71,39.65$, $30.74,22.54,18.92,18.77$. Empirical formula $\mathrm{C}_{39} \mathrm{H}_{40} \mathrm{~N}_{4}$ established by high-resolution mass spectrometry.

4,11-Di-tert-butyl-5,12-diphenyl-4,5,11,12-tetraazahexacyclo[6.6.1.2 $\left.{ }^{\mathbf{3 , 6}} \cdot 2^{10,13} \cdot \mathbf{0}^{2,7} \cdot \mathbf{0}^{9,14}\right]$ nonadecane ($\mathbf{a B P} \mathbf{B} \sigma$). Using $\mathbf{a B 6} \sigma^{2+}\left(\mathrm{BF}_{4}{ }^{-}\right)_{2}$ $(1.19 \mathrm{~g}, 2.2 \mathrm{mmol}),{ }^{7} \mathbf{a B P} \mathbf{6} \sigma$ was prepared by the same method as sBP4T. After column chromatography (basic alumina, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, R_{f}=$ 0.9), the residue was recrystallized from dichloromethane-acetonitrile, producing the product as a white, microcrystalline solid ($0.71 \mathrm{~g}, 62 \%$), $\mathrm{mp} 231-233{ }^{\circ} \mathrm{C}(\mathrm{dec}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, three conformations): $\delta 7.82$ $(\mathrm{m}, 1 \mathrm{H}), 7.60(\mathrm{~d}, 1 \mathrm{H}), 7.16(\mathrm{~m}, 4 \mathrm{H}), 6.83(\mathrm{~m}, 4 \mathrm{H}), 3.37(\mathrm{~m}, 2 \mathrm{H}), 3.13$ $(\mathrm{m}, 2 \mathrm{H}), 1.42-2.33(\mathrm{~m}, 16 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H})$, $0.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, three conformations): $\delta 156.32,156.11$, $127.96,127.50,122.53,122.34,121.60,121.38,120.93,120.83,118.57$, $59.15,58.84,58.17,49.56,49.44,48.82,48.61,47.32,44.23,43.40$, $42.33,39.48,37.97,31.31,31.20,29.28,24.09,23.41,23.26,19.14$, 17.88, 17.79. Empirical formula $\mathrm{C}_{35} \mathrm{H}_{48} \mathrm{~N}_{4}$ established by high-resolution mass spectrometry.

4,12-Di-tert-butyl-5,11-diphenyl-4,5,11,12-tetraazahexacyclo[6.6.1.2 $\left.{ }^{3,6} \cdot 2^{10,13} \cdot \boldsymbol{0}^{2,7} \cdot \mathbf{0}^{9,14}\right]$ nonadecane ($\mathbf{s B P} 6 \sigma$). Starting with $\mathbf{~} \mathbf{S B 6} \sigma^{2+}{ }_{-}$ $\left(\mathrm{BF}_{4}^{-}\right)_{2}(1.10 \mathrm{~g}, 2.0 \mathrm{mmol}),{ }^{7} \mathbf{s B P 6} \sigma$ was prepared by the same method as SBP4T. The product was recrystallized as a white, microcrystalline solid ($0.83 \mathrm{~g}, 78 \%$), mp $224-226{ }^{\circ} \mathrm{C}$ (dec). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, two conformations): $\delta 7.80(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~m}, 4 \mathrm{H}), 6.82(\mathrm{~m}, 4 \mathrm{H}), 3.45(\mathrm{bs}$, $1 \mathrm{H}), 3.33(\mathrm{bs}, 1 \mathrm{H}), 3.28(\mathrm{~m}, 2 \mathrm{H}), 1.41-2.34(\mathrm{~m}, 16 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H})$, $1.11(\mathrm{~s}, 6 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, two conformations): δ $156.26,156.04,128.05,127.92,127.58,127.45,127.27,122.43,122.39$, $122.06,121.53,121.39,121.10,120.90,120.85,119.50,59.27,59.11$, 58.95, 58.62, 58.09, 50.13, 49.66, 49.52, 49.41, 49.07, 47.13, 47.06, $44.19,42.31,42.10,40.12,39.37,31.31,29.34,24.19,24.18,23.30$, $23.11,19.29,17.69$. Empirical formula $\mathrm{C}_{35} \mathrm{H}_{48} \mathrm{~N}_{4}$ established by highresolution mass spectrometry.

4,11-Di-tert-butyl-5,12-diisopropyl-4,5,11,12-tetraazahexacyclo[6.6.1.2 $\left.{ }^{3,6} \cdot 2^{10,13} . \boldsymbol{0}^{2,7} .0^{9,14}\right]$ nonadecane (aBI6 σ). Isopropylmagnesium chloride ($5.0 \mathrm{~mL}, 2.0 \mathrm{M}$ in THF, 10.0 mmol) was added dropwise to a stirring, ice cold suspension of $\mathbf{a B 6} \sigma^{\mathbf{2}}\left(\mathrm{BF}_{4}^{-}\right)_{2}(0.27 \mathrm{~g}, 0.50 \mathrm{mmol})^{7}$ in THF (5 mL). After stirring at room temperature for 2 h , water (20 mL) was carefully added to the reaction solution. The aqueous solution was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 10 \mathrm{~mL})$, the combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and the solvent was evaporated, leaving 0.36 g of red-brown oil. Column chromatography (basic alumina, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, R_{f}=0.9$), followed by recrystallization from $\mathrm{CH}_{3} \mathrm{CN}$, gave the product as a white, microcrystalline solid $(0.29 \mathrm{~g}$, 84\%), mp 227-229 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, three conformations): δ 3.27 (septet, 2H), 3.08 (bs, 2H), 2.92 (bs, 2H), 1.54-1.94 (m, 14H), $1.36(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~d}, 6 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}), 1.17(\mathrm{~s}, 9 \mathrm{H}), 1.09$ (two overlapping doublets, 6 H$).{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, three conformations): $\delta 57.92,57.83,57.69,54.46,50.51,50.41,50.19,50.10,49.52,48.99$, 48.42 , $45.79,44.62,41.76,39.98,39.86,38.12,31.08,31.00,30.30$, 24.66, 23.85, 20.45, 20.05, 19.93, 19.69. Empirical formula $\mathrm{C}_{29} \mathrm{H}_{52} \mathrm{~N}_{4}$ established by high-resolution mass spectrometry.

4,12-Di-tert-butyl-5,11-diisopropyl-4,5,11,12-tetraazahexacyclo-
 by the same method as the anti isomer but using $\mathbf{~} \mathbf{B 6} \mathbf{6} \sigma^{2+}\left(\mathrm{BF}_{4}^{-}\right)_{2}(0.51$ $\mathrm{g}, 0.94 \mathrm{mmol}) .{ }^{7}$ The product was obtained as a white microcrystalline
solid (0.27 g, 59\%), mp 223-225 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, two conformations): $\delta 3.27$ (septet, 2 H), 3.10 (bs, 2H), 2.95 (bs, 2H), 1.31$2.03(\mathrm{~m}, 16 \mathrm{H}), 1.22(\mathrm{~d}, 6 \mathrm{H}), 1.18(\mathrm{~s}, 18 \mathrm{H}), 1.09$ (two overlapping doublets, 6 H$).{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, two conformations): $\delta 57.95,57.72$, $54.47,50.51,50.46,50.21,50.10,49.53,48.44,45.81,44.58,40.00$, $39.86,38.14,36.72,31.06,30.30,24.66,23.88,20.46,20.08,19.93$, 19.69. Empirical formula $\mathrm{C}_{29} \mathrm{H}_{52} \mathrm{~N}_{4}$ established by high-resolution mass spectrometry.

4,10-Di-tert-butyl-5,9-diphenyl-4,5,9,10-tetraazatetracyclo[6.2.2.2 $\left.{ }^{3,6} .0^{2,7}\right]$ tetradecyl Dication Bishexafluoroantimonate (sBP4T ${ }^{2+}$ $\left(\mathbf{S b F}_{\mathbf{6}}{ }^{-}\right)_{\mathbf{2}}$). $\mathbf{~ S B P 4 T}(21 \mathrm{mg}, 0.046 \mathrm{mmol})$ and $\mathrm{AgSbF}_{6}(30 \mathrm{mg}, 0.087$ $\mathrm{mmol})$ were placed in a test tube under nitrogen and cooled to -20 ${ }^{\circ} \mathrm{C}$. Acetone $(1.5 \mathrm{~mL})$ was cooled to $-20^{\circ} \mathrm{C}$ and added via cannula to the stirring solids. The mixture was stirred at $-20^{\circ} \mathrm{C}$ for 15 min and then at room temperature for 1 h . The solution was filtered through Celite, and the silver solid was washed with acetone. The red-orange filtrate was concentrated to 0.5 mL with a stream of nitrogen, and diethyl ether (10 mL) was added dropwise, precipitating a dark redorange solid ($36 \mathrm{mg}, 87 \%$). UV-vis: $\lambda_{\max }=464 \mathrm{~nm}\left(\epsilon_{\max }=6478\right.$ $\mathrm{M}^{-1} \mathrm{~cm}^{-1}$), 325 (10800), 275 (5780), 233 (4780).

4,5,11,12-Tetraphenyl-4,5,11,12-tetraazahexacyclo[6.6.1.2 ${ }^{3,6} .2^{10,13} .0^{2,7} .0^{9,14}$]nonadecyl Dication Bishexafluoroantimonate $\left(\mathbf{P}_{2} \mathbf{6} \sigma^{\mathbf{2}+}\left(\mathbf{S b F}_{\mathbf{6}}{ }^{-}\right)_{\mathbf{2}}\right)$. Following the same procedure, $\mathbf{P}_{\mathbf{2}} \mathbf{6} \sigma(21 \mathrm{mg}$, 0.038 mmol) was oxidized with $\mathrm{AgSbF}_{6}(24 \mathrm{mg}, 0.070 \mathrm{mmol}$). A dark blue solid ($27 \mathrm{mg}, 75 \%$) was precipitated by dropwise addition of 1:1 diethyl ether-pentane $(10 \mathrm{~mL})$. UV-vis: $\lambda_{\text {max }}=568 \mathrm{~nm}\left(\epsilon_{\max }=5569\right.$ $\mathrm{M}^{-1} \mathrm{~cm}^{-1}$), 399 (3422), 327 (13500), 264 (15800).

4,11-Di-tert-butyl-5,12-diphenyl-4,5,11,12-tetraazahexacyclo[6.6.1.2 ${ }^{3,6} .2^{10,13} \cdot 0^{2,7} .0^{9,14}$]nonadecyl Dication Bishexafluoroantimonate $\left(\mathbf{a B P} 6 \sigma^{2+}\left(\mathbf{S b F}_{6}{ }^{-}\right)_{2}\right)$. Following the procedure for $\mathbf{S B P}^{\mathbf{2}} \mathbf{T}^{2+}\left(\mathrm{SbF}_{6}{ }^{-}\right)_{2}$, aBP6 $\sigma(60 \mathrm{mg}, 0.11 \mathrm{mmol})$ was oxidized with $\mathrm{AgSbF}_{6}(72 \mathrm{mg}, 0.21$ $\mathrm{mmol})$. A red-orange solid ($60 \mathrm{mg}, 5 \%$) was obtained after precipitation. UV-Vis: $\lambda_{\max }=434 \mathrm{~nm}\left(\epsilon_{\max }=3384 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right), 327$ (9410), 279 (5790), 234 (4480).

4,12-Di-tert-butyl-5,11-diphenyl-4,5,11,12-tetraazahexacyclo[6.6.1.2 ${ }^{3,6} \cdot 2^{10,13} .0^{2,7} \cdot 0^{9,14}$]nonadecyl Dication Bishexafluorophosphate ($\mathbf{s B P 6} \sigma^{\mathbf{2}+}\left(\mathbf{P F}_{\mathbf{6}}{ }^{-}\right)_{\mathbf{2}}$. Following the same procedure, $\mathbf{s B P 6} \sigma$ ($37 \mathrm{mg}, 0.071$ mmol) was oxidized with $\mathrm{AgPF}_{6}(35 \mathrm{mg}, 0.14 \mathrm{mmol})$. A red-orange solid ($35 \mathrm{mg}, 62 \%$) was obtained after precipitation. UV -vis : $\lambda_{\max }=$ $434 \mathrm{~nm}\left(\epsilon_{\max }=3424 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right), 329$ (9110), 277 (5350), 233 (4300).

4,11-Di-tert-butyl-5,12-diisopropyl-4,5,11,12-tetraazahexacyclo[6.6.1.2 ${ }^{3,6} .2^{10,13} \cdot 0^{2,7} .0^{9,14}$]nonadecyl Dication Bishexafluoroantimonate ($\left.\mathbf{a B I 6} \sigma^{\mathbf{2}+} \mathbf{(S b F}_{\mathbf{6}}{ }^{-}\right)_{\mathbf{2}}$). Following the same proceedure, $\mathbf{a B I 6} \sigma$ (33 mg , 0.072 mmol) was oxidized with $\mathrm{AgSbF}_{6}(45 \mathrm{mg}, 0.13 \mathrm{mmol})$. A light yellow solid ($54 \mathrm{mg}, 90 \%$) was obtained. UV-vis: $\lambda_{\max }=283 \mathrm{~nm}$ $\left(\epsilon_{\max }=6690 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$.

4,12-Di-tert-butyl-5,11-diisopropyl-4,5,11,12-tetraazahexacyclo[6.6.1.2 $\left.{ }^{3,6} .2^{10,13} \cdot 0^{2,7} .0^{9,14}\right]$ nonadecyl Dication Bisnitrate ($\left.\mathrm{sBI6} \sigma^{2+}\left(\mathrm{NO}_{3}{ }^{-}\right)_{2}\right)$. Following the same procedure, sBI6 $\sigma(41 \mathrm{mg}, 0.091 \mathrm{mmol})$ was oxidized with $\mathrm{AgNO}_{3}(25 \mathrm{mg}, 0.15 \mathrm{mmol})$. A light yellow solid (31 $\mathrm{mg}, 70 \%$) was obtained after precipitation. UV-vis: $\lambda_{\max }=283 \mathrm{~nm}$ $\left(\epsilon_{\max }=6572 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$.

Intervalence Bis(hydrazine) Radical Cation Samples for Optical Analysis. Better reproducibility was found when solutions of bis(hydrazine) radical cations were made by comproportionation than by preparing and isolating the radical cations. Equimolar quantities of a neutral bishydrazine and its dication were added to $3-4 \mathrm{~mL}$ of the desired solvent in a 10 mL volumetric flask. The solution was sonicated until all the solids dissolved $(15-60 \mathrm{~min}$; slow dissolving is a major problem) and was then diluted to 10 mL and filtered through a cotton plug to remove any undissolved solids before optical analysis. One or more Gaussian bands (eq 14) were summed with a simulated IV-CT

$$
\begin{equation*}
\epsilon(\tilde{v})=\epsilon_{\max } / \exp \left[\left(\left(\tilde{v}-\tilde{v}_{\max }\right)^{2} \times 4 \log [2] /\left(\Delta \tilde{v}_{1 / 2}\right)^{2}\right]\right. \tag{14}
\end{equation*}
$$

band to fit the observed spectra. The ϵ values reported were adusted for concentrations calculated from the comproportionation equilibria (ΔG° values determined by cyclic voltammetry are reported in Table 1). For variable temperature spectra, the solution volume was adjusted for solvent expansion using the temperature coefficient for solvent density, and $H_{a b}(n)$ was calculated using the refractive index calculated at the temperature used employing the temperature coefficient for refractive index. The $\epsilon_{\mathrm{s}}, n, \gamma$, and temperature coefficients employed here were obtained from the literature ${ }^{35}$ and appear in Table 8 of the Supporting Information.

The bis(hydrazyl) radical cation samples were prepared electrochemically, as described previously. ${ }^{7}$

Acknowledgment. We thank the National Science Foundation (Grants CHE-9417946 and CHE-9988727) and the Research Corporation (Grant RA0269) for partial financial support of this research.

Supporting Information Available: Tables of solvent parameters employed, cyclic voltammetric data, and variable temperature optical data. This material is available free of charge via the Internet at http://pubs.acs.org.

JA003436N

[^10]
[^0]: * Tel: 608-262-3426. Fax: 608-265-4534. E-mail: nelsen@chem.wisc.edu.
 \dagger University of Wisconsin-Madison.
 * Osaka City University.
 (1) For reviews of Marcus theory, see: (a) Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta 1985, 811, 265-322. (b) Sutin, N. Prog. Inorg. Chem. 1983, 30, 441-99.
 (2) (a) Hush, N. S. Prog. Inorg. Chem. 1967, 8, 391. (b) Hush, N. S. Electrochim. Acta 1968, 13, 1005.

[^1]: (3) (a) Creutz, C. Prog. Inorg. Chem. 1983, 30, 1. (b) Crutchley, R. J. Prog. Inorg. Chem. 1994, 41, 273.
 (4) (a) Nelsen, S. F.; Ismagilov, R. F.; Powell, D. R. J. Am. Chem. Soc. 1997, 119, 10213. (b) Nelsen, S. F.; Ismagilov, R. F.; Trieber, D. A.; II Science 1997, 278, 846. (c) Nelsen, S. F.; Ismagilov, R. F.; Gentile, K. E.; Powell, D. R. J. Am. Chem. Soc. 1999, 121, 7108.
 (5) Nelsen, S. F.; Adamus, J.; Wolff, J. J. J. Am. Chem. Soc. 1994, 116, 1589.
 (6) Nelsen, S. F.; Ramm, M. T.; Wolff, J. J.; Powell, D. R. J. Am. Chem. Soc. 1997, 119, 6863.
 (7) Nelsen, S. F.; Trieber, D. W.; II.; Wolff, J. J.; Powell, D. R.; RogersCrowley, S. J. Am. Chem. Soc. 1997, 119, 6873.

[^2]: (8) (a) Evans, C. E. G.; Naklicki, M. L.; Rezvani, A. R.; White, C. A.; Kondratiev, V. V.; Crutchley, R. J. J. Am. Chem. Soc. 1998, 120, 13096103. (b) dicyd $=1,4-\left({ }^{-} \mathrm{N}=\mathrm{CN}\right)_{2} \mathrm{C}_{6} \mathrm{R}_{4}$, where R_{4} was $\mathrm{H}_{4} ;,\left(\mathrm{CH}_{3}\right)_{4}, 2,5-\mathrm{Cl}_{2}$ -$3,6-\mathrm{H}_{2}$, or Cl_{4}.
 (9) Sutton, J. E.; Sutton, P. M.; Taube, H. Inorg. Chem. 1979, 18, 1017.
 (10) Problems with eq 1-3 arise for IV compounds having very small ET barriers, as discussed in detail separately: Nelsen, S. F. Chem. Eur. J. 2000, 6, 581.
 (11) Grampp, G.; Jaenicke, W. Ber. Bunsen-Ges. Phys. Chem. 1984, 88, 325 and references therein.
 (12) Curtis, J. C.; Sullivan, B. P.; Meyer, T. J. Inorg. Chem. 1983, 22, 224.
 (13) (a) Hupp, J. T.; Liu, H. Y.; Farmer, J. K.; Gennet, T.; Weaver, M. J. J. Electroanal. Chem. 1984, 168, 313. (b) Hupp, J. T.; Weaver, M. J. J. Phys. Chem. 1985, 89, 1601.
 (14) (a) Chang, J. P.; Fung, E. Y.; Curtis, J. C. Inorg. Chem. 1986, 25, 4233. (b) Lau, K. W.; Hu. A. M.; Yen, M. H.; Fung, E. Y.; Grzybicki, S.; Matramoros, R.; Curtis, J. C. Inorg. Chem. Acta 1994, 226, 137.
 (15) Mao, W.; Qian, Z.; Yen, H.-J.; Curtis, J. C. J. Am. Chem. Soc. 1996, 118, 3247.

[^3]: (16) (a) Gutmann, V. Coord. Chem. Rev. 1976, 18, 225. (b) Gutmann, V. The Donor-Acceptor Approach to Molecular Interactions; Plenum: New York, 1980. (c) DN is the absolute value of the heat of mixing of a solution of SbCl_{5} in 1,2-dichloroethane with another solvent, so $\mathrm{DN} \equiv 0$ for 1,2 dichloroethane (abbreviated here as DCE), and increases with the heat of mixing.

[^4]: (17) Hush, N. S. Coord. Chem. Rev. 1985, 64, 135.
 (18) (a) Gould, I. R.; Noukakis, D.; Gomez-Jahn, L.; Young, R. H.; Goodman, J. L.; Farid, S. Chem. Phys. 1993, 176, 439. (b) Gould, I. R.; Young, R. H.; Mueller, L. J.; Farid, S. J. Am. Chem. Soc. 1994, 116, 8176. (c) Gould, I. R.; Young, R. H.; Mueller, L. J.; Albrecht, A. C.; Farid, S. J. Am. Chem. Soc. 1994, 116, 8188. (d) Gould, I. R.; Farid, S. Acct. Chem. Res. 1996, 29, 522.
 (19) (a) Newton, M. D.; Cave, R. J. Molecular Electronics; Jortner, J., Ratner, M., Eds.; Blackwell Science: Oxford, 1997; p 73. (b) Cave, R. J.; Newton, M. D. Chem. Phys. Lett. 1996, 249, 15. (c) Cave, R. J.; Newton, M. D. J. Chem. Phys. 1997, 106, 9213. (d) Newton, M. D. Adv. Chem. Phys. 1999, 106, Pt. 1, 303.

[^5]: (20) Nelsen, S. F.; Newton, M. D. J. Phys. Chem. A 2000, 104, 10023.
 (21) (a) The literature optical data for $\mathbf{2 2} \mathbf{H}^{+}$, sBIT ${ }^{+}$, and $\mathbf{P H}^{+}$are repeated but have been reanalyzed to extract $H_{a b}(n)$ using $d_{a b}$ values calculated from the d_{12} (AM1) values shown in Table 1. Trial resimulations using the Gaussian superposition technique showed that significant changes from the published values of E_{op} and do not occur for these compounds; there is not serious enough band overlap for these compounds to require such analysis. (b) We previously used (by default) the average of the smaller nonbonded N, N distances (which is the separation of the midpoints of the NN bonds) as $d_{a b}$ in calculating $H_{a b}$ (Hush) for the saturated-bridged compounds. We note that these distances are significantly larger than $d_{a b^{-}}$ (AM1). (c) Although it is not obvious which are the better d_{12} values to use to correlate the optical data, experimental $d_{12}(\mathrm{ESR})$ values are not available for many compounds, and we use $d_{12}(\mathrm{AM} 1)$ values here. The $2+$ oxidation state must be both long-lived and have a low-enough lying triplet form for the dipolar splitting to be measured, which we have not yet succeeded in doing for any of the $4-\sigma$-bond bridged systems. An advantage of using d_{12} (AM1) over distances between atoms is that it allows consistent estimations of d_{12} for compounds that have the axis of the delocalized π system both nearly perpendicular to the electron-transfer direction (as for the σ-bond bridged systems, which for the examples studied, the "center-to-center" distance is the same as the "edge-to-edge" distance between the charge-bearing units) and at a larger angle (ca. 120° for the aromatic-bridged systems, for which the "edge-to-edge" distance, the $d_{\mathrm{N}, \mathrm{N}}$ distances quoted in Table 2 are smaller than the "center-to-center" distance. ${ }^{20}$
 (22) (a) Nelsen, S. F.; Ismagilov, R. F.; Teki, Y. J. Am. Chem. Soc. 1998, 120, 2200. (b) Teki, Y.; Ismagilov, R. F.; Nelsen, S. F. Mol. Cryst. Liq. Cryst. A 1999, 334, 313.

[^6]: (24) (a) Matyushov, D. V. Mol. Phys. 1993, 79, 795. (b) Matyushov, D. V. Chem. Phys. 1993, 174, 199. (c) Matyushov, D. V.; Schmid, R. J. Phys. Chem. 1994, 98, 5152. (d) Matyushov, D. V.; Schmidt, R. Chem. Phys. Lett. 1994, 220, 369. (d) For a recent successful experimental application, see: Vath, P.; Zimmt, M. B. J. Phys. Chem. A 2000, 104, 2626.
 (25) Marcus's commonly used DCT expression for λ_{s} uses no DN term (that is, $C=0$) and $B=e^{2}\left(r^{-1}-d^{-1}\right)$, where r is the radius of a chargebearing unit and d is the distance between their centers. This expression cannot be used for our compounds because it assumes that $2 r>d$, which is not the case for either the 4 - or the 5 -bond bridged compounds.
 (26) (a) Sharp, K. A.; Honig, B. Annu. Rev. Biophys. Biophys. Chem. 1990, 19, 301. (b) Sitkoff, D.; Sharp, K. A.; Honig, B. J. Phys. Chem. 1994, 98, 1978.
 (27) (a) Liu, Y.-P.; Newton, M. D. J. Phys. Chem. 1995, 99, 12382. (b) (b) Kurnikov, I. V.; Zusman, L. D.; Kurnikova, M. G.; Farid, R. S.; Beratan, D. N. J. Am. Chem. Soc. 1997, 119, 5690. (c) Kumar, K.; Kurnikov, I. V.; Beratan, D. N.; Waldeck, D. H.; Zimmt, M. B. J. Phys. Chem. A 1998, 102, 5529.

[^7]: (28) (a) Nelsen, S. F.; Ismagilov, R. F.; Chen, L.-J.; Brandt, J. L.; Chen, X.; Pladziewicz, J. R. J. Am. Chem. Soc. 1996, 118, 1555. (b) Nelsen, S. F.; Ramm, M. T.; Ismagilov, R. F.; Nagy, M. A.; Trieber, D. A., II.; Powell, D. R.; Chen, X.; Gengler, J. J.; Qu, Q.; Brandt, J. L.; Pladziewicz, J. R. J. Am. Chem. Soc. 1997, 119, 5900. (c) Nelsen, S. F.; Ismagilov, R. F.; Gentile, K. E.; Nagy, M. A.; Tran, H. Q.; Qu, Q.; Halfen, D. T.; Oldegard, A. L.; Pladziewicz, J. R. J. Am. Chem. Soc. 1998, 120, 8230. (d) Nelsen, S. F.; Trieber, D. A., II.; Nagy, M. A.; Konradsson, A.; Halfen, D. T.; Splan, K. A.; Pladziewicz, J. R. J. Am. Chem. Soc. 2000, 122, 5940.
 (29) Because there is no experimental way of evaluating the encounter complex formation constant K_{e}, one cannot separate effects on it from those on $\left(H_{a b}\right)^{2}$, and technically, we can only discuss the size of $\left.H_{a b}^{\prime}=\left(K_{\mathrm{e}}\right)^{1 / 2} H_{a b}\right)$.

[^8]: ${ }^{a}$ From ref 28d (see its Supporting Information for the 22/tBuiPr value). ${ }^{b}$ Calculated from eq 11 using $H_{a b}^{\prime}=0.01 \mathrm{kcal} / \mathrm{mol}$ (number in parentheses used $\left.H_{a b}^{\prime}=0.016 \mathrm{kcal} / \mathrm{mol}\right) .{ }^{c}$ Averages of λ_{v} values for the saturated-bridged compounds of Table 4. ${ }^{d}$ Column 3 - column 4.

[^9]: (30) (a) Kumar, K.; Kurnikov, I. V.; Beratan, D. N.; Waldeck, D. H.; Zimmt, M. B. J. Phys. Chem. A 1998, 102, 5529. (b) Read, I.; Napper, A.; Kaplan, R.; Zimmt, M. B.; Waldeck, D. H. J. Am. Chem. Soc. 1999, 121, 10976. (c) Roest, M. R.; Verhoeven, J. W.; Schuddeboom, W.; Warman, J. M.; Lawson, J. M.; Paddon-Row, M. N. J. Am. Chem. Soc. 1996, 118, 1762. (d) Jolliffe, K. A.; Bell, T. D. M.; Ghiggino, K. P.; Langford, S. J.; Paddon-Row, M. N. Angew. Chem., Int. Ed. 1998, 37, 916.
 (31) Nelsen, S. F.; Tran, H. Q. J. Am. Chem. Soc. 1998, 120, 298.
 (32) The $-J$ term in eq 12 had not been previously used. ${ }^{8 \mathrm{a}}$
 (33) Although $\mathbf{P H}^{+}$has a significantly larger $H_{a b}$ and in retrospect might have been a better choice, its ΔG_{c} was not measured in a variety of solvents.

[^10]: (35) Riddick, J. A.; Bunder, W. B.; Sakano, T. K. Organic Solvents, 4th ed.; Wiley: New York, 1986.

